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a b s t r a c t

Helly’s theorem is a classical result concerning the intersection patterns of convex sets
in Rd. Two important generalizations are the colorful version and the fractional version.
Recently, Bárány et al. combined the two, obtaining a colorful fractional Helly theorem. In
this paper, we give an improved version of their result.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Helly’s theorem is one of the most well-known and fundamental results in combinatorial geometry, which has various
generalizations and applications. It was first proved by Helly [12] in 1913, but his proof was not published until 1923, after
alternative proofs by Radon [17] and König [15]. We recommend the survey paper by Amenta, Loera, and Soberón [4] for
an overview of previous results and open problems related to Helly’s theorem. Recall that a family is intersecting if the
intersection of all members is non-empty. The following is the original version of Helly’s theorem.

Theorem 1.1 (Helly’s Theorem, Helly [12]). Let F be a finite family of convex sets in Rd with |F | ≥ d + 1. Suppose every
(d + 1)-tuple of F is intersecting. Then the whole family F is intersecting.

The following variant of Helly’s theorem was found by Lovász, whose proof appeared first in a paper by Bárány [5]. Note
that the original theorem by Helly is obtained by setting F1 = F2 = · · · = Fd+1.

Theorem 1.2 (Colorful Helly Theorem, Lovász [5]). Let F1, F2, . . . , Fd+1 be finite, non-empty families (color classes) of convex
sets in Rd such that every colorful (d+ 1)-tuple is intersecting. Then, for some 1 ≤ i ≤ d+ 1, the whole family Fi is intersecting.

One way to generalize Helly’s theorem is by weakening the assumption: not necessarily all but only a positive fraction
of (d + 1)-tuples are intersecting. The following theorem shows how the conclusion changes.

Theorem 1.3 (Fractional Helly Theorem, Katchalski and Liu [14]). For every α ∈ (0, 1], there exists β = β(α, d) ∈ (0, 1] such
that the following holds: Let F be a finite family of convex sets in Rd with |F | ≥ d + 1. If at least α


|F |

d+1


of the (d + 1)-tuples

in F are intersecting, then F contains an intersecting subfamily of size at least β|F |.
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The fractional variant of Helly’s theorem first appeared as a conjecture on interval graphs, i.e. intersection graphs of
families of intervals on R. Abbott and Katchalski [1] proved that β = 1 −

√
1 − α is optimal for every family whose

intersection graph is a chordal graph. Note that, by a result of Gavril [10], interval graphs are chordal graphs.
The fractional Helly theorem for arbitrary dimensions was proved by Katchalski and Liu [14]. Their proof gives a lower

bound β ≥ α/(d + 1), and also shows that β tends to 1 as α tends to 1. Note that the original theorem by Helly is obtained
by setting α = 1. Later, the quantitatively sharp value β(α, d) = 1− (1− α)1/(d+1) was found by Kalai [13] and Eckhoff [7],
which is a consequence of the upper bound theorem for families of convex sets.

The (p, q)-theorem, another important generalization of Helly’s theorem, deals with a weaker version of the assumption,
the so-called (p, q)-condition: for every p members in a given family, there are some q members of the family that are
intersecting. For instance, the (d + 1, d + 1)-condition in Rd is the hypothesis of Helly’s theorem. The (p, q)-theorem was
proved by Alon and Kleitman [3], settling a conjecture by Hadwiger and Debrunner [11]. It states as follows.

Theorem 1.4 ((p, q)-Theorem, Alon and Kleitman [3]). Let p, q and d be integers with p ≥ q ≥ d+1. Then there exists a number
HDd(p, q) such that the following is true: Let F be a finite family of convex sets in Rd satisfying the (p, q)-condition. Then F has
a transversal consisting of at most HDd(p, q) points.

The original proof of the (p, q)-theorem is quite long and involved, using various techniques. It was later shown by Alon
et al. [2] that the most crucial ingredient is the fractional Helly theorem, and they showed that one can obtain a (p, q)-
theorem for abstract set-systems which satisfy an appropriate ‘‘fractional Helly property’’. For an overview and further
knowledge of this field, see the survey papers by Eckhoff [8,9] and the textbook by Matoušek [16].

Recently, Bárány et al. [6] established colorful and fractional versions of the (p, q)-theorem. A key ingredient in their
proof was a colorful variant of the fractional Helly theorem.

Theorem 1.5 (Bárány, Fodor, Montejano, Oliveros, and Pór [6]). Let F1, F2, . . . , Fd+1 be finite, non-empty families (color
classes) of convex sets in Rd, and assume that α ∈ (0, 1]. If at least α|F1| · · · |Fd+1| of the colorful (d+1)-tuples are intersecting,
then some Fi contains an intersecting subfamily of size α

d+1 |Fi|.

The proof in [6] follows the standard argument where each intersecting colorful (d + 1)-tuple is charged to one of its
d-tuples. (See for instance section 8.1 in [16] for a proof of the uncolored version.)

Note that for α = 1we recover the hypothesis of the colorful Helly theorem, and it is natural to ask whether the function
β tends to 1 as α tends to 1. This problem is implicitly contained in the paper by Bárány et al. [6] and was communicated to
us by F. Fodor.

Here we solve this problem by showing the following.

Theorem 1.6. For every α ∈ (0, 1], there exists β = β(α, d) ∈ (0, 1] tending to 1 as α tends to 1 such that the following holds:
Let F1, F2, . . . , Fd+1 be finite, non-empty families (color classes) of convex sets in Rd. If at least α|F1| · · · |Fd+1| of the colorful
(d + 1)-tuples are intersecting, then for some 1 ≤ i ≤ d + 1, Fi contains an intersecting subfamily of size β|Fi|.

In order to prove Theorem 1.6, we will show that for every sufficiently small ϵ > 0, if none of the Fi have an intersecting
subfamily of size (1 − ϵ)|Fi|, then there is a positive fraction of the colorful (d + 1)-tuples which are non-intersecting. This
will be done with explicit calculations.

An interesting aspect of our proof is that it is purely combinatorial (formulated in the language of uniform hypergraphs)
and uses only the colorful Helly theorem as a ‘‘black box’’. Our method can easily be modified to provide another (simple)
proof that the function β tends to 1 as α tends to 1 in the classical fractional Helly theorem (Theorem 1.3), but it does not
give the optimal bound of Kalai and Eckhoff.

2. Proof of Theorem 1.6

2.1. The matching number of hypergraphs

Let H be an r-uniform hypergraph on a vertex set X . A subset S ⊆ X is said to be an independent set in H if the
induced sub-hypergraphH[S] contains no hyperedge. The independence number α(H) ofH is the cardinality of amaximum
independent set in H . A matching of H is a set of pairwise disjoint edges in H . The matching number ν(H) of H is the
cardinality of a maximummatching in H . We need the following observation.

Observation 2.1. Let H = (X, E) be an r-uniform hypergraph with |X | = n. Suppose

α(H) < cn

for some c ∈ (0, 1]. Let M = {e1, . . . , eν} be a maximum matching in H . Note that X \ (e1 ∪ · · · ∪ eν) is an independent set in
H . If not, assume that there is an edge e contained in X \ (e1 ∪· · ·∪ eν). Then M ∪{e} is a matching inH , which is a contradiction
to the maximality of M. Thus

|X \ (e1 ∪ · · · ∪ eν)| = n − rν(H) ≤ α(H) < cn,

so ν(H) > n−cn
r .
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2.2. Proof of Theorem 1.6

We will show the following more explicit result.

Theorem 2.2. For every α ∈ (0, 1], the following holds: Let F1, F2, . . . , Fd+1 be finite families (color classes) of convex sets
in Rd. If at least α|F1| · · · |Fd+1| of the colorful (d + 1)-tuples are intersecting, then for some 1 ≤ i ≤ d + 1, Fi contains an
intersecting subfamily of size at least

max


α

d + 1
, 1 − (d + 1)(1 − α)

1
d+1


|Fi|.

The following is a key lemma for the proof of Theorem 2.2.

Lemma 2.3. Choose any subfamily from each color class, say F ′

1 , . . . , F ′

d+1. If each of F ′

i is not intersecting, then at least one of
colorful (d + 1)-tuple is not intersecting.

Proof. This follows directly from the colorful Helly theorem. �

Proof of Theorem 2.2. It is sufficient to show that for every α ∈


1 −

1
(d+1)(d+1) , 1


, if at least α|F1| · · · |Fd+1| of the colorful

(d+1)-tuples are intersecting, then someFi contains an intersecting subfamily of size at least

1 − (d + 1)(1 − α)

1
d+1


|Fi|.

Let F be the disjoint union of F1, F2, . . . , Fd+1. For each 1 ≤ i ≤ d+1, let ni = |Fi| and define a (d+1)-uniform hyper-
graph Hi := (Fi, Ei) whose hyperedges are the non-intersecting (d + 1)-tuples in Fi. Let νi = ν(Hi) for each 1 ≤ i ≤ d + 1.

Also define a (d+1)-uniformhypergraphH := (F , E)whose hyperedges are the intersecting colorful (d+1)-tuples inF .
Given α ∈


1 −

1
(d+1)(d+1) , 1


, let γ = γ (α, d) = 1 − (d + 1)(1 − α)

1
d+1 . To show a contradiction, assume that in each

family Fj, every subfamily of size at least γ nj has an empty intersection.
By our hypothesis we have

αn1 · · · nd+1 ≤ |E|,

and by Lemma 2.3 we have

|E| ≤ n1 · · · nd+1 − ν1 · · · νd+1.

Combining this with Observation 2.1, νj >
nj−γ nj
d+1 =


1−γ

d+1


nj, we obtain

αn1 · · · nd+1 ≤ n1 · · · nd+1 − ν1 · · · νd+1

< n1 · · · nd+1 −


1 − γ

d + 1

d+1

n1 · · · nd+1

=


1 −


1 − γ

d + 1

d+1

n1 · · · nd+1,

hence α < 1 − (
1−γ

d+1 )d+1
= α, which is a contradiction.

Thus, there should exist 1 ≤ i ≤ d+1 such thatFi contains an intersecting subfamily of size (1−(d+1)(1−α)
1

d+1 )ni. �

3. The upper bound

In this section, we prove the following.

Theorem 3.1. For every α ∈ (0, 1], there exist finite families (color classes) F1, . . . , Fd+1 of convex sets in Rd such that the
following holds.α|F1| · · · |Fd+1| of the colorful (d+1)-tuples are intersecting, but in each color classFi, themaximum cardinality
of an intersecting subfamily is at most


1 − (1 − α)

1
d+1


|Fi|.

First recall that in the fractional Helly theorem, the upper bound is given by

β = β(α, d) ≤


1 − (1 − α)

1
d+1


.

This can be seen by the following well-known construction, which also shows the exactness of upper bound theorem for
convex sets [7,13].
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Example 3.2. Let F consist of ⌊βn⌋ − (d+ 1) copies of Rd and n− ⌊βn⌋ + (d+ 1) hyperplanes in general position. Denote
by fd(F ) the number of intersecting (d + 1)-tuples in F . Note that

α


n

d + 1


= fd(F ) =


n

d + 1


−


n − (⌊βn⌋ − (d + 1))

d + 1


.

The following example, which is conjectured to have the maximum number of intersecting (d + 1)-tuples, shows
Theorem 3.1.

Example 3.3. Let {v1, . . . , vd+1} form a (regular) d-simplex centered at the origin in Rd. Let li be a half-line starting from
the origin which passes through vi. Define Ri := conv({l1, . . . , ld+1} \ {li}). Let K = K1 ∪ · · · ∪ Kd+1 be a family ofd+1

i=1 (ni − ⌊βni⌋ + 1) hyperplanes in general position in Rd such that the following holds: for each i = 1, . . . , d + 1,
|Ki| = ni − ⌊βni⌋ + 1 and every member in Ki does not meet Ri. Note that each hyperplane in Ki meets li, and any colorful
(d + 1)-tuple in K1, . . . , Kd+1 is not intersecting.

Now, for each i = 1, . . . , d + 1, let Fi consist of ⌊βni⌋ − 1 copies of Ri and all the hyperplanes in Ki. Note that every
intersecting subfamily in Fi has size at most βni. It is easy to see that every colorful (d + 1)-tuple in F1, . . . , Fd+1 is
intersecting, except the colorful (d + 1)-tuples in K1, . . . , Kd+1.

Denote by fd(F1, . . . , Fd+1) the number of intersecting colorful (d + 1)-tuples of F1, . . . , Fd+1. Then we have

αn1 · · · nd+1 = fd(F1, . . . , Fd+1) = n1 · · · nd+1 − (n1 − ⌊βn1⌋ + 1) · · · (nd+1 − ⌊βnd+1⌋ + 1) .

4. Remarks

In this note, we found a lower bound on the function β(α, d) ≥ 1 − (d + 1)(1 − α)
1

d+1 for α ∈


1 −

 1
d+1

d+1

, and an

upper bound β(α, d) ≤ 1 − (1 − α)
1

d+1 in the colorful fractional Helly theorem.
It would be interesting to determine the exact value of β(α, d).

Problem 4.1. What is the exact value of β = β(α, d) in Theorem 1.6?

It is easy to see that β(α, 1) = 1 −
√
1 − α is the optimal bound for d = 1. We conjecture that β(α, d) = 1 − (1 − α)

1
d+1

is the optimal bound for d > 1. This can be shown by proving the following.

Conjecture 4.2. Let ni ≥ ki be given for i = 1, . . . , d+1. Let F1, . . . Fd+1 be families of convex sets inRd such that the following
holds. For each i = 1, . . . , d + 1, |Fi| = ni and there is no intersecting subfamily of size ki in Fi. Then the number of intersecting
colorful (d + 1)-tuples is at most

n1 · · · nd+1 − (n1 − k1 + 1) · · · (nd+1 − kd+1 + 1).
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